June, 2004
Which food crop is traded in larger quantities than any other in the world? The answer is wheat, and China produces more of it than any other country. With more than 150 participants from 20 countries in attendance, CIMMYT and China held their first joint wheat quality conference in Beijing from 29 to 31 May. The conference focused on progress in China’s wheat quality research, educated participants about quality needs of the milling industry and consumers, and promoted international collaboration.
In recent years, advanced science has been making wheat more nutritious, easy to process, and profitable. Scientists can improve quality characteristics such as grain hardness, protein content, gluten strength, color, and dough processing properties. Quality improvement, however, is not an objective, one-wheat-fits-all-purposes kind of business. Wheat end products vary by region and require grain with different characteristics. For example, 80% of wheat in China is used for noodles and dumplings, but the desired wheat quality for those products might not be appropriate for pasta in Italy or couscous in North Africa.
“You can see a wide variation of wheat use reflecting cultural influences over many centuries,” says CIMMYT Director General Masa Iwanaga, who gave a keynote presentation at the conference about the benefits of adding value to wheat to improve the livelihoods of poor people. Iwanaga says he is impressed by China’s wheat quality research and emphasis on biotechnology in recent years.
Participants from major wheat producing regions such as China, Central Asia, India, the European Union, Eastern Europe, the United States, and Australia presented updates on a variety of topics related to the global wheat industry and quality management. The participants included experts in genomics, breeding, crop management, cereal chemistry, and the milling industry, among others.
The US, Australia, Canada, and the EU see Asia as a good market for their wheat, says Javier Peña, head of industrial quality at CIMMYT. Asian foods such as noodles have been becoming more popular in the west, says Peña, while traditional western wheat-based foods have been gaining popularity in Asia. The milling industry has been growing to meet this increasing demand. “It was evident that globalization is influencing consumers’ preferences,” he says.
Conference participant and CIMMYT wheat breeder Morten Lillemo thinks the organizers did a good job assembling top lecturers to provide information. Chinese wheat breeders have been paying a lot of attention to improving quality, he says, and participants now understand the characteristics that traditional Chinese end products require.
“China is the largest wheat producer in the world, but the quality of their wheat is highly variable, even for traditional products like steamed bread and noodles,” says Lillemo. “For me it was most interesting to learn about the wheat quality work going on in China, which challenges they have, and how they are dealing with them.”
The 10-year-long CIMMYT–China collaboration has been fruitful. Chinese wheat has been used to develop new varieties with Fusarium and Karnal bunt disease resistance, high yield potential, and agronomic traits such as lodging resistance and rapid grain filling. In turn, CIMMYT has helped to improve the productivity, disease resistance, and processing quality of Chinese wheats. It has also developed human resources and helped build research infrastructure.
“The progress China has made in this period has been impressive in the areas of molecular biology, breeding, and food processing,” says Peña, who thought the conference covered a good balance of topics, ranging from genetics to consumer preferences. “The government is really supporting the research. They have new buildings and modern equipment for molecular biology and wheat quality testing.”
The Quality and Training Complex sponsored by the Chinese Academy of Agricultural Sciences and CIMMYT is a new effort. It offers a testing system for various wheat-based foods, facilities for genetic studies and other research using molecular markers, and training for graduates, postdoctoral fellows, and visiting scientists.
Along with improved wheat and better cropping practices that help farmers save money on costly inputs, such as water, Iwanaga believes that more marketable maize and wheat grain will be important for improving the profitability of maize and wheat production in developing countries. He would like to increase the benefits that farmers reap from their harvests by bettering a range of traits, including taste, texture, safety, and nutrition with added protein or vitamins. That way, farmers can earn more money from better quality wheat.
Conference presentations covered a wide range of topics: molecular studies of the evolution of the wheat genome; new tools to assess heat tolerance and grain quality in wheat genotypes; molecular genetic modification of wheat flour quality; the biochemical and molecular genetic study of glutenin proteins in bread wheat and related species; the molecular investigation of storage product accumulation in wheat endosperm; molecular and conventional methods for assessing the processing quality of Chinese wheat; challenges for breeding high-quality wheat with high yield potential; the impact of genetic resources on breeding for breadmaking quality in common wheat; wheat quality improvement by genetic manipulation and biosafety assessment of transgenic wheat lines; and quality characteristics of transgenic wheat lines.
The conference was organized by the Chinese Academy of Agricultural Sciences / National Wheat Improvement Center, the Chinese Academy of Science, CIMMYT, BRI Australia, Limagrain, and the Crop Science Society of China. It was sponsored by the Ministry of Science and Technology, the Ministry of Agriculture, the National Nature Science Foundation of China, the Grains Research and Development Corporation, and Japan International Cooperation Agency.
For information: Zonghu He