Farmers and agricultural policymakers frequently encounter tough decisions with complex trade-offs. Selecting which crop to plant next season, for example, would be much easier with a crystal ball. Wei Xiong, a senior scientist at the International Maize and Wheat Improvement Center (CIMMYT), cannot look into the future, but he can remove a lot of the guesswork.
Xiong uses modeling tools to simulate how agricultural systems would respond to different policies, technological innovations and climate change.
“With these simulations, we can show farmers and policymakers different hypothetical outcomes,” said Xiong. “We can help them make better, more informed decisions.”
Xiong and his multi-disciplinary team are interested in looking at new angles of agricultural issues. For one project, Xiong is investigating how climate change could affect global beer prices. He and his team are studying the effects of increasingly frequent extreme weather events, such as drought, on global barley yields and how this could affect beer production and prices.
“We call the project drinking security,” added Xiong.
Xiong is also interested in the impacts of air pollution on agricultural production and livelihoods in India and China.
“We want to know if air pollution affects yields and whether policies to curb air pollution will have any impact on farmer incomes, food prices and international trade,” he said.
Xiong collaborates with a team of Chinese agricultural scientists and local extension officers on a program called Size & Technology Backyard. The program aims to increase farmers’ yields while decreasing agricultural pollution in the water, air and soil. During each growing season, agricultural students stay in villages to conduct surveys and field research with farmers.
“Based on that data, we can create an agricultural modeling system that incorporates everything from the crop physiology side, to the socioeconomic side and human dimension side,” said Xiong. “We can project which farmers are most likely to adopt which specific kinds of technology based on everything from their location to their family structure.”
But in China, Xiong explained, agriculture still falls under government control.
“The government has always decided which crop you should plant, which area you should use and how to use the areas,” said Xiong. “Most of the policies are based on suggestions by experts.”
The team will use their simulation models to recommend policies that benefit farmers and the environment.
Xiong effectively links many silos through his work at CIMMYT, in large part due to his diverse educational background. After receiving a bachelor’s degree in geography at Hubei University, he continued with a master’s degree in meteorology from the Chinese Academy of Agricultural Sciences (CAAS) in Beijing. He later went on to earn a doctorate in agronomy from China Agricultural University.
After ten years as a professor at CAAS, Xiong worked at the International Institute for Applied Systems Analysis where he designed large-scale simulations of crop production and the effects of global policy. In 2014, he collaborated with other researchers on a global agriculture systems modeling project through a position at the University of Florida. Last fall, Xiong joined CIMMYT at its headquarters in El Batán, Mexico, working on sustainable intensification.
Xiong will return to China later this year to help establish a new CIMMYT office in Henan and strengthen CIMMYT’s partnership with Henan Agricultural University. The new location will focus on research and training, and will host two international senior scientists with expertise in remoting sensing, informatics, physiology and crop management.